Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Ecol Evol ; 6(9): 1318-1329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851851

RESUMO

Replicated radiations, in which sets of similar forms evolve repeatedly within different regions, can provide powerful insights into parallel evolution and the assembly of functional diversity within communities. Several cases have been described in animals, but in plants we lack well-documented cases of replicated radiation that combine comprehensive phylogenetic and biogeographic analyses, the delimitation of geographic areas within which a set of 'ecomorphs' evolved independently and the identification of potential underlying mechanisms. Here we document the repeated evolution of a set of leaf ecomorphs in a group of neotropical plants. The Oreinotinus lineage within the angiosperm clade Viburnum spread from Mexico to Argentina through disjunct cloud forest environments. In 9 of 11 areas of endemism, species with similar sets of leaf forms evolved in parallel. We reject gene-flow-mediated evolution of similar leaves and show, instead, that species with disparate leaf forms differ in their climatic niches, supporting ecological adaptation as the driver of parallelism. Our identification of a case of replicated radiation in plants sets the stage for comparative analyses of such phenomena across the tree of life.


Assuntos
Florestas , Fluxo Gênico , Adaptação Fisiológica , Animais , México , Filogenia
3.
Syst Biol ; 70(1): 67-85, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267945

RESUMO

Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].


Assuntos
Viburnum , Ecossistema , Florestas , Fósseis , Filogenia , Filogeografia
4.
Am J Bot ; 106(6): 833-849, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31124135

RESUMO

PREMISE: We take an integrative approach in assessing how introgression and Pleistocene climate fluctuations have shaped the diversification of the core Lentago clade of Viburnum, a group of five interfertile species with broad areas of sympatry. We specifically tested whether flowering time plays a role in maintaining species isolation. METHODS: RAD-seq data for 103 individuals were used to infer the species relationships and the genetic structure within each species. Flowering times were compared among species on the basis of historical flowering dates documented by herbarium specimens. RESULTS: Within each species, we found a strong relationship between flowering date and latitude, such that southern populations flower earlier than northern ones. In areas of sympatry, the species flower in sequence rather than simultaneously, with flowering dates offset by ≥9 d for all species pairs. In two cases it appears that the offset in flowering times is an incidental consequence of adaptation to differing climates, but in the recently diverged sister species V. prunifolium and V. rufidulum, we find evidence that reinforcement led to reproductive character displacement. Long-term trends suggest that the two northern-most species are flowering earlier in response to recent climate change. CONCLUSIONS: We argue that speciation in the Lentago clade has primarily occurred through ecological divergence of allopatric populations, but differences in flowering time were essential to maintain separation of incipient species when they came into secondary contact. This combination of factors may underlie diversification in many other plant clades.


Assuntos
Evolução Biológica , Mudança Climática , Flores/fisiologia , Viburnum/fisiologia , Flores/crescimento & desenvolvimento , América do Norte , Estações do Ano , Especificidade da Espécie , Simpatria/fisiologia , Viburnum/crescimento & desenvolvimento
5.
Appl Plant Sci ; 7(3): e01233, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30937225

RESUMO

PREMISE OF THE STUDY: Phenological annotation models computed on large-scale herbarium data sets were developed and tested in this study. METHODS: Herbarium specimens represent a significant resource with which to study plant phenology. Nevertheless, phenological annotation of herbarium specimens is time-consuming, requires substantial human investment, and is difficult to mobilize at large taxonomic scales. We created and evaluated new methods based on deep learning techniques to automate annotation of phenological stages and tested these methods on four herbarium data sets representing temperate, tropical, and equatorial American floras. RESULTS: Deep learning allowed correct detection of fertile material with an accuracy of 96.3%. Accuracy was slightly decreased for finer-scale information (84.3% for flower and 80.5% for fruit detection). DISCUSSION: The method described has the potential to allow fine-grained phenological annotation of herbarium specimens at large ecological scales. Deeper investigation regarding the taxonomic scalability of this approach is needed.

6.
Ann Bot ; 123(2): 381-390, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29982369

RESUMO

Background and Aims: Enlarged sterile flowers on the periphery of inflorescences increase the attractiveness of floral displays, and previous studies have generally demonstrated that these have positive effects on insect visitation and/or reproductive success. However, experiments have not specifically been designed to examine the benefits of sterile flowers under conditions that reflect the early stages in their evolution, i.e. when plants that produce sterile flowers are at low frequency. Methods: Over three years, three experiments were performed in natural populations of Viburnum lantanoides, which produces sterile marginal flowers (SMFs). The first experiment established that fruit production in V. lantanoides increases with the receipt of outcross pollen. The second tested the role of SMFs under extant conditions, comparing fruit production in two populations composed entirely of intact plants or entirely of plants with the SMFs removed. The third was designed to mimic the presumed context in which SMFs first evolved; here, SMFs were removed from all but a few plants in a population, and rates of insect visitation and fruit set were compared between plants with intact and denuded SMFs. Key Results: In comparing whole populations, the presence of SMFs nearly doubled fruit set. Under simulated 'ancestral' conditions within a population, plants with intact SMFs received double the insect visits and produced significantly more fruits than denuded plants. There was no significant effect of the number of inflorescences or fertile flowers on insect visitation or fruit set, indicating that the presence of SMFs accounted for these differences. Conclusions: The presence of SMFs significantly increased pollinator attraction and female reproductive success both in contemporary and simulated ancestral contexts, indicating that stabilizing selection is responsible for their maintenance, and directional selection likely drove their evolution when they first appeared. This study demonstrates a novel approach to incorporating historically relevant scenarios into experimental studies of floral evolution.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Polinização , Seleção Genética , Viburnum/genética , Animais , Evolução Biológica , Autofertilização , Viburnum/crescimento & desenvolvimento
7.
Syst Biol ; 68(2): 187-203, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521050

RESUMO

Species are the starting point for most studies of ecology and evolution, but the proper circumscription of species can be extremely difficult in morphologically variable lineages, and there are still few convincing examples of molecularly informed species delimitation in plants. Here, we focus on the Viburnum nudum complex, a highly variable clade that is widely distributed in eastern North America. Taxonomic treatments have mostly divided this complex into northern (V. nudum var. cassinoides) and southern (V. nudum var. nudum) entities, but additional names have been proposed. We used multiple lines of evidence, including RADseq, morphological, and geographic data, to test how many independently evolving lineages exist within the V. nudum complex. Genetic clustering and phylogenetic methods revealed three distinct groups-one lineage that is highly divergent, and two others that are recently diverged and morphologically similar. A combination of evidence that includes reciprocal monophyly, lack of introgression, and discrete rather than continuous patterns of variation supports the recognition of all three lineages as separate species. These results identify a surprising case of cryptic diversity in which two broadly sympatric species have consistently been lumped in taxonomic treatments. The clarity of our findings is directly related to the dense sampling and high-quality genetic data in this study. We argue that there is a critical need for carefully sampled and integrative species delimitation studies to clarify species boundaries even in well-known plant lineages. Studies following the model that we have developed here are likely to identify many more cryptic lineages and will fundamentally improve our understanding of plant speciation and patterns of species richness.


Assuntos
DNA de Plantas/genética , Viburnum/classificação , Viburnum/genética , DNA de Plantas/química , Especiação Genética , Filogenia , Mapeamento por Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos , Viburnum/anatomia & histologia
8.
Appl Plant Sci ; 6(2): e1022, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29732253

RESUMO

PREMISE OF THE STUDY: Herbarium specimens provide a robust record of historical plant phenology (the timing of seasonal events such as flowering or fruiting). However, the difficulty of aggregating phenological data from specimens arises from a lack of standardized scoring methods and definitions for phenological states across the collections community. METHODS AND RESULTS: To address this problem, we report on a consensus reached by an iDigBio working group of curators, researchers, and data standards experts regarding an efficient scoring protocol and a data-sharing protocol for reproductive traits available from herbarium specimens of seed plants. The phenological data sets generated can be shared via Darwin Core Archives using the Extended MeasurementOrFact extension. CONCLUSIONS: Our hope is that curators and others interested in collecting phenological trait data from specimens will use the recommendations presented here in current and future scoring efforts. New tools for scoring specimens are reviewed.

9.
Bioscience ; 68(2): 112-124, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599548

RESUMO

The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.

10.
New Phytol ; 217(2): 939-955, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083043

RESUMO

Nonrandom collecting practices may bias conclusions drawn from analyses of herbarium records. Recent efforts to fully digitize and mobilize regional floras online offer a timely opportunity to assess commonalities and differences in herbarium sampling biases. We determined spatial, temporal, trait, phylogenetic, and collector biases in c. 5 million herbarium records, representing three of the most complete digitized floras of the world: Australia (AU), South Africa (SA), and New England, USA (NE). We identified numerous shared and unique biases among these regions. Shared biases included specimens collected close to roads and herbaria; specimens collected more frequently during biological spring and summer; specimens of threatened species collected less frequently; and specimens of close relatives collected in similar numbers. Regional differences included overrepresentation of graminoids in SA and AU and of annuals in AU; and peak collection during the 1910s in NE, 1980s in SA, and 1990s in AU. Finally, in all regions, a disproportionately large percentage of specimens were collected by very few individuals. We hypothesize that these mega-collectors, with their associated preferences and idiosyncrasies, shaped patterns of collection bias via 'founder effects'. Studies using herbarium collections should account for sampling biases, and future collecting efforts should avoid compounding these biases to the extent possible.


Assuntos
Plantas/anatomia & histologia , Austrália , Geografia , Modelos Teóricos , Filogenia , Característica Quantitativa Herdável , Análise de Regressão , Viés de Seleção , Fatores de Tempo
11.
New Phytol ; 207(2): 340-354, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25644136

RESUMO

We used a near-complete phylogeny for the angiosperm clade Viburnum to assess lineage diversification rates, and to examine possible morphological and ecological factors driving radiations. Maximum-likelihood and Bayesian approaches identified shifts in diversification rate and possible links to character evolution. We inferred the ancestral environment for Viburnum and changes in diversification dynamics associated with subsequent biome shifts. Viburnum probably diversified in tropical forests of Southeast Asia in the Eocene, with three subsequent radiations in temperate clades during the Miocene. Four traits (purple fruits, extrafloral nectaries, bud scales and toothed leaves) were statistically associated with higher rates of diversification. However, we argue that these traits are unlikely to be driving diversification directly. Instead, two radiations were associated with the occupation of mountainous regions and a third with repeated shifts between colder and warmer temperate forests. Early-branching depauperate lineages imply that the rare lowland tropical species are 'dying embers' of once more diverse lineages; net diversification rates in Viburnum likely decreased in these tropical environments after the Oligocene. We suggest that 'taxon pulse' dynamics might characterize other temperate plant lineages.


Assuntos
Biodiversidade , Evolução Biológica , Clima , Fenótipo , Filogenia , Floresta Úmida , Viburnum/genética , Teorema de Bayes , Ecologia , Ecossistema , Temperatura
12.
Am J Bot ; 101(6): 1029-1049, 2014 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-24928633

RESUMO

• Premise of the study: Despite recent progress, significant uncertainties remain concerning relationships among early-branching lineages within Viburnum (Adoxaceae), prohibiting a new classification and hindering studies of character evolution and the increasing use of Viburnum in addressing a wide range of ecological and evolutionary questions. We hoped to resolve these issues by sequencing whole plastid genomes for representative species and combining these with molecular data previously obtained from an expanded taxon sample.• Methods: We performed paired-end Illumina sequencing of plastid genomes of 22 Viburnum species and combined these data with a 10-gene data set to infer phylogenetic relationships for 113 species. We used the results to devise a comprehensive phylogenetic classification and to analyze the evolution of eight morphological characters that vary among early-branching lineages.• Key results: With greatly increased levels of confidence in most of the early branches, we propose a phylogenetic classification of Viburnum, providing formal phylogenetic definitions for 30 clades, including 13 with names recognized under the International Code of Nomenclature for Algae, Fungi, and Plants, eight with previously proposed informal names, and nine newly proposed names for major branches. Our parsimony reconstructions of bud structure, leaf margins, inflorescence form, ruminate endosperm, extrafloral nectaries, glandular trichomes, palisade anatomy, and pollen exine showed varying levels of homoplasy, but collectively provided morphological support for some, though not all, of the major clades.• Conclusions: Our study demonstrates the value of next-generation plastid sequencing, the ease of creating a formal phylogenetic classification, and the utility of such a system in describing patterns of character evolution.


Assuntos
Evolução Molecular , Genomas de Plastídeos , Filogenia , Viburnum/classificação , DNA de Cloroplastos/genética , DNA de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...